Lagrangian Floer Theory on Compact Toric Manifolds I
نویسندگان
چکیده
The present authors introduced the notion of weakly unobstructed Lagrangian submanifolds and constructed their potential function PO purely in terms of A-model data in [FOOO3]. In this paper, we carry out explicit calculations involving PO on toric manifolds and study the relationship between this class of Lagrangian submanifolds with the earlier work of Givental [Gi1] which advocates that quantum cohomology ring is isomorphic to the Jacobian ring of a certain function, called the Landau-Ginzburg superpotential. Combining this study with the results from [FOOO3], we also apply the study to various examples to illustrate its implications to symplectic topology of Lagrangian fibers of toric manifolds. In particular we relate it to Hamiltonian displacement property of Lagrangian fibers and to Entov-Polterovich’s symplectic quasi-states.
منابع مشابه
Lagrangian Floer Theory on Compact Toric Manifolds Ii : Bulk Deformations
This is a continuation of part I in the series (in progress) of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations, we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. We also provide a method of finding all those fibers in arbitrary compact toric manif...
متن کاملFukaya Categories and the Minimal Model Program: Creation
We prove that small blow-ups or reverse flips (in the sense of the minimal model program) of rational symplectic manifolds with trivial centers create Floer-non-trivial Lagrangian tori. We give examples of explicit mmp runnings and descriptions of Floer non-trivial tori in the case of toric manifolds, polygon spaces, and moduli spaces of flat bundles on punctured two-spheres (moduli of paraboli...
متن کاملFukaya Algebras and the Minimal Model Program
We prove that small blow-ups or reverse flips (in the sense of the minimal model program) of rational symplectic manifolds with point centers create Floer-non-trivial Lagrangian tori. We give examples of explicit mmp runnings and descriptions of Floer non-trivial tori in the case of toric manifolds, polygon spaces, and moduli spaces of flat bundles on punctured two-spheres (moduli of parabolic ...
متن کاملGauged Floer Theory of Toric Moment Fibers
We investigate the small area limit of the gauged Lagrangian Floer cohomology of Frauenfelder [17]. The resulting cohomology theory, which we call quasimap Floer cohomology, is an obstruction to displaceability of Lagrangians in the symplectic quotient. We use the theory to reproduce the results of FukayaOh-Ohta-Ono [21], [19] and Cho-Oh [12] on non-displaceability of moment fibers of not-neces...
متن کاملAnti-self-dual instantons with Lagrangian boundary conditions
We consider a nonlocal boundary condition for anti-self-dual instantons on four-manifolds with a space-time splitting of the boundary. This boundary condition naturally arises from making the Chern-Simons functional on a three-manifold with boundary closed: The restriction of the instanton to each time-slice of the boundary is required to lie in a Lagrangian submanifold of the moduli space of f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008